Lace expansion for the Ising model

نویسنده

  • Akira Sakai
چکیده

The lace expansion has been a powerful tool for investigating mean-field behavior for various stochastic-geometrical models, such as self-avoiding walk and percolation, above their respective upper-critical dimension. In this paper, we prove the lace expansion for the Ising model that is valid for any spin-spin coupling. For the ferromagnetic case, we also prove that the expansion coefficients obey certain diagrammatic bounds that are similar to the diagrammatic bounds on the lace-expansion coefficients for self-avoiding walk. As a result, we obtain Gaussian asymptotics of the critical two-point function for the nearest-neighbor model with d ≫ 4 and for the spread-out model with d > 4 and L ≫ 1, without assuming reflection positivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High order perturbation study of the frustrated quantum Ising chain

In this paper, using high order perturbative series expansion method, the critical exponents of the order parameter and susceptibility in transition from ferromagnetic to disordered phases for 1D quantum Ising model in transverse field, with ferromagnetic nearest neighbor and anti-ferromagnetic next to nearest neighbor interactions, are calculated. It is found that for small value of the frustr...

متن کامل

Magnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice

Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization,  internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.

متن کامل

The Lace Expansion and its Applications

ii The Lace Expansion and its Applications The Lace Expansion and its Applications iii Preface Several superficially simple mathematical models, such as the self-avoiding walk and percolation, are paradigms for the study of critical phenomena in statistical mechanics. Although these models have been studied by mathematicians for about half a century, exciting new developments continue to occur ...

متن کامل

Polygons and the Lace Expansion

We give an introduction to the lace expansion for self-avoiding walks, with emphasis on self-avoiding polygons, and with a focus on combinatorial rather than analytical aspects. We derive the lace expansion for self-avoiding walks, and show that this is equivalent to taking the reciprocal of the self-avoiding walk generating function. We list some of the rigorous results for self-avoiding walks...

متن کامل

The lace expansion on a tree with application to networks of self-avoiding walks

The lace expansion has been used successfully to study the critical behaviour in high dimensions of self-avoiding walks, lattice trees and lattice animals, and percolation. In each case, the lace expansion has been an expansion along a time interval. In this paper, we introduce the lace expansion on a tree, in which ‘time’ is generalised from an interval to a tree. We develop the expansion in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007